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Abstract: Right-handed neutrinos offer us the possibility of accommodating neutrino

masses. In a supersymmetric model, this implies the existence of right-handed sneutrinos.

Right-handed sneutrinos are expected to be as light as other supersymmetric particles if

the neutrinos are Dirac fermions or if the lepton-number breaking scale is at (or below)

the supersymmetry (SUSY) breaking scale, assumed to be around the electroweak scale.

Depending on the mechanism of SUSY breaking, the lightest right-handed sneutrino may

be the lightest supersymmetric particle (LSP). We consider the unique hadron collider

signatures of a weak scale right-handed sneutrino LSP, assuming R-parity conservation.

For concreteness, we concentrate on stop pair-production and decay at the Tevatron and

the Large Hadron Collider, and briefly comment on the production and decay of other

supersymmetric particles.
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1. Introduction

A renormalizable extension of the standard model (SM) that incorporates neutrino masses

can be obtained by introducing (at least two) SM gauge singlet fermions – right-handed

neutrinos NR. Neutrino masses arise due to the fact that right-handed neutrinos can cou-

ple to the left-handed ones (νL) through Yukawa couplings. After electroweak symmetry

breaking, the SM neutrinos are endowed with either Majorana or Dirac masses. A super-

symmetric version of this scenario implies the existence of new, complex, SM gauge singlet

scalar fields – the right-handed∗ sneutrinos ÑR.

The right-handed neutrino superfield N̂ is a SM gauge singlet and is allowed to have

a supersymmetry (SUSY) preserving Majorana mass MN . In the usual high-scale seesaw

mechanism [1], MN – the scale of lepton number breaking – is, in general, not related to

the SUSY breaking scale. It is often considered to be around 1014 GeV so that, if the

neutrino Yukawa couplings are order one, active neutrino masses are around 0.1 eV, the

scale inferred from neutrino oscillation experiments [2]. This scenario, while elegant, is

∗“Sfermions” are, of course, scalar particles, and have no sense of handedness. Throughout, however,

we refer to left- and right-handed sfermions (scalar neutrinos, scalar tops, etc), as is commonly done in the

literature, in order to indicate the super-partner of the various left- and right-handed chiral fermion fields

(the neutrino, the top quark, etc).
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very hard to verify experimentally† and is motivated by the fact that neutrino Yukawa

couplings are “naturally” expected to be of order one. If the seesaw energy scale is indeed

very high, right-handed sneutrino masses are expected to be of order MN and, hence,

these are decoupled from low-energy phenomena. SUSY effects in a theory with a high

seesaw scale have been considered in [4]. It is also possible that neutrino masses arize from

couplings to an SU(2) triplet Higgs boson [5]. The supersymmetric version of such a theory

doesn’t have to include a right-handed neutrino superfield and thus its signatures is outside

the purview of this work.

It has recently been emphasized that any value of MN is technically natural [6] (in-

cluding MN ≡ 0, in which case the neutrinos are Dirac fermions), and that it is important

to explore the phenomenological consequences of all values of MN . One intriguing possi-

bility is to consider, for example, that the unknown physics of SUSY breaking and lepton

number breaking are intimately connected, resulting in a common mass scale. If this is the

case (or if the SUSY breaking scale were larger than MN ), right-handed sneutrino masses

are expected to be of the same order as the masses of all other super-partners. Finally,

the radiative stability of the weak scale indicates that the SUSY breaking scale ought to

be around the weak scale, so that super-partners are expected to make their presence felt

at TeV scale collider experiments.

Depending on the physics of SUSY breaking, right-handed sneutrino masses may end

up below all other “active” super-partner masses, so that the lightest sneutrino is the

lightest supersymmetric partner (LSP). In general, left- and right-handed sneutrinos mix.

However, given that the seesaw energy scale is assumed to be very low, the neutrino Yukawa

coupling is, phenomenologically, required to be very small. Hence, if one assumes that the

supersymmetric breaking “A-terms” are proportional to the respective Yukawa couplings,

left-right sneutrino mixing is expected to be very small (see, for example, [7] for details,

some aspects of which are given in appendix A for convenience) and the LSP will turn out

to be composed of a mostly right-handed sneutrino, ÑR.

In a recent work [7], we considered such a ÑR LSP when the Majorana and SUSY

breaking mass scales are around the electroweak scale. In this case, the neutrino Yukawa

coupling YN ∼ 10−6 in order for the light neutrino masses to be to be of the order of

0.1 eV. We analyzed the sneutrino sector, pointed out in which cases the left-right sneutrino

mixing angle can be tiny resulting in an almost pure ÑR LSP, and argued that the ÑR is

an interesting non-thermal dark matter candidate‡ (see also [9]). In this paper we explore

the hadron collider implications of a predominantly ÑR LSP. Collider signatures of a mixed

ν̃L − ÑR LSP have been explored previously in other studies [10].

Since a weak scale ÑR LSP interacts only through the tiny Yukawa coupling YN , many

unique collider signatures are expected to arise. We will show that the most striking among

them is the possibility of the next-to-lightest supersymmetric particle (NLSP) being long-

lived enough to leave a displaced vertex in the detector. A similar situation exists in theories

†One possibility is to look for right-handed neutrino traces in the RGE evolution of the Soft SUSY

breaking parameters, which could be revealed using precision measurements at a next-generation linear

collider [3].
‡In case of additional non-standard interactions, it can also be a thermal dark matter candidate [8].
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of gauge mediation where the gravitino is the LSP [11, 12], with usually the scalar tau or

the lightest neutralino as NLSPs. A displaced vertex signature in the context of “hidden

valley” models is discussed in [13]. However, the scenario discussed here is distinguished by

(a) the potentially long-lived states can be strongly interacting, (b) the LSP carries lepton

number, which implies associated leptons in the final state, and (c) the LSP interacts only

through the Yukawa coupling YN , which generically implies non-universal rates for e, µ,

and τ type leptons.

In order to illustrate the unique collider signatures of a ÑR LSP, we consider in detail

the case where the right-handed stop (t̃R) is the NLSP,§ and analyze its pair-production

and decay. While serving to illustrate many of the unique features of a ÑR LSP, a light

stop is natural in many scenarios [14] and is favored in successful theories of electroweak

baryogenesis [15]. Stops, being strongly interacting particles, are also expected to be

produced at significant rates at the Tevatron and the LHC. Stop production and decay

have also been analyzed in other contexts [11, 16, 17].

The outline of the paper is as follows: In section 2, we compute the decay rate of

the t̃R into the 3-body final state b`+ÑR. We incorporate this decay matrix element into

the Monte Carlo program Pythia (version 6.327) [18] and study the Tevatron and LHC

signatures in section 3. In section 4, we briefly discuss the dominant signatures of other

SUSY NLSP candidates, such as gluinos, sbottoms, gauginos, and sleptons, and comment

on “co-LSP” right-handed sneutrinos. We offer our conclusions in section 5. The details

of the model with which we work were spelled out in detail in [7], and are summarized in

appendix A. The exact expression for the stop decay matrix element is given in appendix B.

2. t̃R decay to ÑR

In the scenario of interest, assuming R-parity conservation, all supersymmetric particles

eventually cascade-decay to the stable ÑR LSP. Since the ÑR couples only via the tiny YN ,

the NLSP can be potentially long-lived. To illustrate this aspect, in this section we consider

in detail the decay of the right-handed stop (t̃R). This will be particularly relevant when

the t̃R is not too heavy, in which case its production cross-section can be large enough to

be observable at the Tevatron or the LHC. A brief discussion of the decays of other NLSP

candidates is given in section 4. We omit, for simplicity, stop mixing. We find that the

inclusion of left-right scalar top mixing does not change significantly any of our results.

Figure 1 shows the dominant contribution to the decay of a predominantly right-handed

stop, which is assumed to be the NLSP, into a pure ÑR LSP. The related mode t̃ → tνÑR

can also be relevant if kinematically allowed, although phase-space suppressed with respect

to t̃ → b`ÑR due to the top quark in the final state.

The complete expression for the lightest stop decay matrix element, including the

mixings of all relevant SUSY particles, is presented in appendix B. For a purely right-

handed stop and sneutrino, in the limit of pure higgsino H̃ exchange,¶ the formula for the

§For simplicity we will take the light t̃ to be predominantly t̃R. While stop mixing is, in general, not

negligible, we find that its inclusion does not change, qualitatively, any of our results.
¶We find that, for the intentions of this paper, it is safe to ignore higgsino–gaugino mixing.
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Figure 1: t̃R → b`ÑR decay mode. The arrows indicate fermion number flow.

stop decay width has a simple form. In the t̃R rest frame, defining θb` as the angle between

the bottom quark and the charged lepton, the matrix element squared is given by

|Tfi|2 ∼
4|Yt|2|YN |2M2

t̃R
EbE`

(
(pt̃R

− kb)2 − M2
H̃

)2

(1 + cos θb`)

2
. (2.1)

Here, |Yt| (|YN |) is the top (neutrino) Yukawa coupling, Eb (E`) is the b-quark (charged

lepton) energy, while kb is the b-quark four-momentum. Mt̃R
and pt̃R

are, respectively, the

t̃R mass and four-momentum, while MH̃ is the Higgsino mass. Due to the (1 + cos θb`)

factor, the matrix element peaks when the b-quark and the charged lepton are aligned.

Later (section 3), we will point out that this cos θb` behavior can be used to distinguish

between t̃R → b`ÑR and t → bW → b`ν. It turns out that, for top quark decays, there is

no peak in the event distribution when the b-quark and the charged lepton are aligned (cf

figure 7).

The decay rate is given by

Γ = 4|Yt|2|YN |2
M5

t̃R

M4
H̃

[
4π

(16π2)2
f̂3PS

]
, (2.2)

where f̂3PS is a dimensionless 3-body phase space function. Note that MH̃ > Mt̃R
.

Numerically, for MÑR
= 100 GeV,

cτ ∼ 10 mm ·
(

4 × 10−6

YN

)2
(

225 GeV

Mt̃R

)5 (
MH̃

250 GeV

)4 (
0.05

f̂3PS

)
. (2.3)

We remind the reader that f̂3PS is a function of MÑR
,Mt̃R

, and MH̃ .

For YN ∼ 10−6, cτ can vary between a few millimeters to several meters, depending on

the stop, sneutrino, and Higgsino masses. cτ values in the Mt̃R
− MÑR

plane are depicted

in figure 2, assuming that MH̃ = 1.1Mt̃R
. For larger values of the Higgsino mass, the

constant cτ contours move toward the Mt̃R
-axis. Displaced vertices, i.e., cτ & 1 mm are

to be expected even for large scalar top masses, while for light enough stops and heavy

enough LSPs and Higgsinos the stop may even be collider-stable. We elaborate on these

possibilities in the next section.
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Figure 2: SOLID – Contours of constant cτ for the right-handed stop, in the Mt̃R
− M

ÑR
plane.

We assume M
H̃

= 1.1Mt̃R
. The Mt̃R

= M
ÑR

dotted line bounds the region of parameter space

where ÑR is the LSP. DASHED – 3 σ sensitivity for stop pair production at the Tevatron (left)

and the LHC (right), for different integrated luminosities. Note that the displaced vertices are not

taken into account when defining the sensitivity. See text for the details.

If lepton number is conserved in nature, MN = bN = c` = 0 (see appendix A),

neutrinos are Dirac fermions and, in order to obtain the right order of magnitude for the

active neutrino masses, YN ∼ 10−12 values are required (cf eq. (A.2)). In this case, cτ

is measured in kilometers and, as far as collider phenomenology is concerned, the t̃R is

absolutely stable.

Heavy, strongly interacting, collider-stable SUSY particles are expected to form ‘R-

hadrons,’ which behave like heavy nucleon-like objects. Similar experimental signatures

have been studied elsewhere [19]. We do not pursue other experimental signatures of

heavy, long-lived, hadronic states. We would, however, like to comment on the fact that

very long-lived t̃R could form narrow “onium-like” t̃Rt̃∗R bound states‖ [21], whose decay

may lead to a peak above the continuum background. An investigation of this phenomenon

will be left for future work.

3. t̃R at the Tevatron and LHC

We consider the production and decay of a t̃R NLSP at the Tevatron and the LHC followed

by its subsequent decay into a purely right-handed sneutrino ÑR LSP, i.e., t̃R → b`+ÑR.

Unless noted otherwise, we assume that the t̃R decays in this way 100% of the time. To

illustrate the behavior of various observables, we will consider the case Mt̃R
= 225 GeV,

MÑR
= 100 GeV, MH̃ = 250 GeV, YN = 4×10−6. In this case, cτ ≈ 10 mm (see eq. (2.3)).

Figure 3 depicts the dominant production mechanism of a t̃R pair,∗ at leading order.

The dominant contribution to t̃R decay is depicted in figure 1. The ÑR escapes the detector

as missing energy so that, experimentally, one should observe pp(p̄) → t̃Rt̃∗R → b`+b̄`− +

‖The same would also be true of long-lived, gluino bound states [20].
∗Depending on the details of the SUSY spectrum, there may be other t̃R production channels, including

gluino pair production, followed by g̃ → t̄t̃R (if kinematically accessible). Here we concentrate on “direct”

QCD production.
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Figure 3: Dominant parton level t̃ pair-production processes at a hadron collider. The diagrams

with gluons in the initial state dominate at the LHC.

1. Rapidity cuts |η`| < 2.5, |ηb| < 2.5

2. pT cuts pT ` > 20 GeV, pT b > 10 GeV

3. Isolation cut Rb` > 0.4

Table 1: “Level 1” cuts imposed in our analysis. We define R2
b`

≡ (φb − φ`)
2 + (ηb − η`)

2.
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Figure 4: The distributions of the transverse displacement of the stop (in mm), at the Tevatron

(left) and the LHC (right).

E/T . The dominant physics background for this process is expected to be top quark pair

production: pp(p̄) → tt̄ → bW+b̄W− → b`+b̄`− + E/T , where the missing energy is due to

neutrinos in the final state. We use the Monte Carlo program Pythia (version 6.327) in

order to analyze, at the parton level, the signal and background at the Tevatron and the

LHC.

The observables available in order to discriminate the signal from background are

the transverse components of kb, k`+ , kb̄ and k`− . We impose the “level 1” cuts shown in

table 1, necessitated by the detector geometric acceptance and thresholds. For the isolation

cut, we make the standard definition R2
b` ≡ (φb−φ`)

2 +(ηb−η`)
2. These values are typical

of other Tevatron analyses, and are meant to approximate the capabilities of the LHC

detectors.
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Figure 4 depicts the resulting transverse displacement (in the x − y plane), after in-

cluding the boost of the stop at the Tevatron (left) and the LHC (right). Even though the

stop is more boosted at the LHC (compared to the Tevatron) due to the higher center-of-

mass energy, the stop pair is more forward peaked at the LHC, causing their transverse

displacement to be smaller at the LHC (compared to the Tevatron). For other MÑR
and

Mt̃R
values, the transverse displacement scales with the scalar top’s cτ . These have been

discussed in the previous section, and are depicted in figure 2.

If a stop is long-lived enough, it will behave like a stable or quasi-stable hadronic object

(as commented on earlier). If it decays before exiting the tracking subsystem, a displaced

vertex may be reconstructed through the stop decay products’ 3-momenta meeting away

from the primary interaction point. In the example considered, a displaced vertex of 10 mm

can be easily discerned at the Tevatron and the LHC. On each side, the b-quark itself leads

to an additional displaced vertex, and its 3-momentum vector can be reconstructed from

its decay products. In combination with the 3-momentum of the lepton, the stop displaced

vertex can be determined. In order to reveal the displaced vertex, one must require either

the b-quark or the charged lepton 3-momentum vector to miss the primary vertex. Since

a pair of stops is produced, we would expect to discern two displaced vertices in the event

(not counting the displaced vertices due to the b-quarks). If a b-quark (`+) cannot be

distinguished from a b̄-antiquark (`−), the associated combinatoric problem of assigning

the decay products to the parent stop will have to be considered. Such an event with two

displaced vertices, from each of which originates a high pT ` and b-quark, is quite uncommon

in SUSY models† and might prove to be one of the main distinguishing characteristics of

such a scenario. A cut on the displaced vertex provides for a very effective way to separate

stop events from the top background. If one can efficiently explore such cuts, we anticipate

that NLSP scalar top searches may turn out to be physics-background free.

Another characteristic feature is the non-universal rates for decays into e, µ and τ

leptons. This is to be expected given that the stop decays are proportional to the YN ’s

which are in general different for the three leptons. Here, we do not take advantage of this

feature.

If the stop displaced vertex cannot be efficiently resolved, one will have to resort to

more conventional analysis methods. In the remainder of this section, we explore various

kinematical distributions for both the signal (right-handed scalar top pair production) and

the physics background (top pair production), obtained after imposing the level 1 cuts

listed in table 1. All the distributions are in the lab frame, normalized to unit area. Note

that the analysis performed here also applies to other SUSY scenarios in which the scalar

top decays predominantly to bottom plus charged lepton plus missing energy, regardless of

whether the stop decays promptly or leaves behind a displaced vertex.

Figure 5 depicts the parton level distributions of the pT of the b-quark at the Tevatron

(left) and the LHC (right) resulting from a 225 GeV stop and from a top, obtained using

Pythia. Figure 6 depicts the distributions of the pT of the charged lepton at the Tevatron

†Other SUSY models that lead to a displaced vertex are the NMSSM with a singlino LSP [25], the case

of bilinear R-parity breaking where neutrino masses are generated via R-parity breaking effects [26], and
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Figure 5: The distribution of pT of the b-quark at the Tevatron (left) and LHC (right) resulting

from the decay of a 225 GeV stop and a top quark.
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Figure 6: The distribution of pT of the charged lepton resulting from the decay of a 225 GeV stop,

and a top, at the Tevatron (left) and the LHC (right).

(left) and the LHC (right), resulting from a 225 GeV stop, and from a top. The pT of

the b-quark from the 225 GeV stop peaks at a lower value compared to the top quark

background, and therefore accepting them at high efficiency for pT . 40 GeV will be very

helpful in maximizing the signal acceptance. The signal and background shapes are quite

similar and no simple set of pT cuts can be made in order to significantly separate signal

from background. As the mass difference between the t̃R and the ÑR decreases, the b-

quark and the charged lepton pT distributions peak at lower values due to less available

phase-space, making the measurements more challenging.

Figure 7 depicts the distribution of cos θb`, the angle between the 3-momenta kb and

k`, for both the signal and background. It is important to appreciate that, by default,

Pythia generates stop decays into the 3-body final state according only to phase-space,

ignoring the angular dependence of the decay matrix element. We have reweighted Pythia

events to include the correct angular dependence in the decay matrix element. Consistent

with the expectation from eq. (2.1), we see for the signal that the distribution peaks for the

also those in [27].
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Figure 7: The distribution of cos θb` resulting from the decay of a 225 GeV stop, and a top, at the

Tevatron (left) and LHC (right).
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Figure 8: The total p/T distribution resulting from a 225 GeV stop, and a top, at the Tevatron

(left) and the LHC (right).

b-quark and charged lepton 3-momenta aligned, unlike the background.‡ It is unfortunate

that the isolation level 1 cut (see table 1) on the leptons removes more signal events than

background events. Relaxing this constraint as much as practical would help in this regard.

Figure 8 shows the total p/T distribution resulting from the production and decay of

a 225 GeV stop and a top quark for the Tevatron (left) and the LHC (right). Here p/T is

defined as
√

p/T
2
x + p/T

2
y, with p/T x and p/T y the x and y components of the total missing

momentum vector. Pythia ignores the spin correlation between the two opposite side

particles and therefore the p/T distributions shown are not entirely accurate in case of the

t-quarks. However, spin correlation modifies the p/T distribution to only a small degree [22],

although it can lead to significant effects in suitably chosen observables [23].

The angular correlation of the stop pair is different from that of the top quark pair,

since the former is a scalar and the latter a fermion. We expect the quantities kb · kb̄ and

‡For another discussion on how to extract stop NLSP’s (in a different context) see [11].
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Mt̃R
MÑR

σS(pb) σB(pb) α S B S/B S/
√

B S/
√

S + B

100
50 11.83 6.77 0.26 162 9 18.93 55.36 12.4

75 11.83 6.77 0.04 4 9 0.45 1.31 1.09

150
100 1.24 6.77 0.29 21 9 2.46 7.21 3.87

125 1.24 6.77 0.05 1 9 0.07 0.21 0.21

175
100 0.48 6.77 0.47 22 9 2.53 7.39 3.93

150 0.48 6.77 0.05 0.2 9 0.03 0.08 0.08

250
100 0.04 6.77 0.71 4 9 0.48 1.4 1.15

200 0.04 6.77 0.31 1 9 0.09 0.27 0.26

Table 2: Signal (stop) and background (top) pair production cross-section at the Tevatron, with

εb = 0.5, and ε` = 0.9. σS and σB denote the signal and background cross-sections, α the fraction

that passes level 1 cuts (see table 1), S and B the number of signal and background events for

1 fb−1.

Mt̃R
MÑR

σS(pb) σB(pb) α S B S/B S/
√

B S/
√

S + B

100
75 1332.5 873 0.03 1938 8662 0.22 20.82 18.82

83 1332.5 873 0.01 73 8662 0.01 0.78 0.78

150
100 228.79 873 0.23 25325 8662 2.92 272.1 137.37

128 228.79 873 0.02 144 8662 0.02 1.54 1.53

250
200 21.32 873 0.26 2886 8662 0.33 31.01 26.86

225 21.32 873 0.03 40 8662 0.01 0.43 0.43

500
400 0.56 873 0.59 398 8662 0.05 4.28 4.19

425 0.56 873 0.48 263 8662 0.03 2.83 2.78

650
250 0.14 873 0.83 195 8662 0.02 2.10 2.08

500 0.14 873 0.71 145 8662 0.02 1.56 1.54

Table 3: Signal (stop) and background (top) pair production cross-section at the LHC, with

εb = 0.5, and ε` = 0.9. σS and σB denote the signal and background cross-sections, α the fraction

that passes level 1 cuts (see table 1), S and B the number of signal and background events for

10 fb−1.

k`+ ·k`− to inherit some of this difference, making these potentially good discriminants for

signal and background. As just mentioned, Pythia is not suitable to investigate this aspect

since it does not retain spin correlations, and we postpone this investigation to future work.

The sensitivity of the Tevatron and the LHC to the stop NLSP is depicted in table 2

and table 3, respectively, for various t̃R and ÑR masses. The stop pair-production cross-

section from Pythia multiplied by the appropriate K-factor [24] is displayed in the table

for the Tevatron and the LHC, along with the top pair-production cross-section [28]. The

fraction of signal events that passes level 1 cuts (specified in table 1), denoted α, obtained

using Pythia is shown, and the fraction of background events (not shown in the table) is

0.79 (Tevatron), and 0.7 (LHC). We compute the number of signal events (S), background

events (B), for 1 fb−1 (Tevatron) and 10 fb−1 (LHC), and compute the figures-of-merit
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S/B, S/
√

B and S/
√

S + B. We have taken the b-tagging efficiency εb = 0.5 and the lepton

identification efficiency ε` = 0.9. The number of events is given by σLα2 ε2
b ε2

` , where L
is the integrated luminosity. It is important to emphasize that we do not consider the

possibility that one can efficiently identify that the scalar top decays far from the production

point. If this is the case, we anticipate that physics backgrounds will be significantly

reduced. At the same time, we remind the reader that we have fixed MH̃/Mt̃R
= 1.1. For

larger values of this ratio, scalar tops are expected to be (much) longer-lived, in which case

other approaches to data analysis are required.

Figure 2 shows the projected 3σ contours in the Mt̃R
−MÑR

plane, with 1 and 10 fb−1

at the Tevatron,§ and 10 and 500 fb−1 at the LHC. We find from our analysis with just

level 1 cuts (see table 1) that the Tevatron can probe stop masses up to about 300 GeV

(with 10 fb−1), while the LHC reach extends slightly above 650 GeV (with 500 fb−1),

with the reach depending on the ÑR mass. We expect that the sensitivity can be improved

with more sophisticated cuts and a multivariate analysis. A smaller Mt̃R
− MÑR

mass

difference leads to softer b-quarks and charged leptons, resulting in a smaller α and leading

to a lower statistical significance. Here we assume that the stop decays to the leptonic

channel considered with 100 % branching ratio. In a specific model the actual significance

can be obtained by including the branching ratio. Our estimates for the top and stop

production rates are in good qualitative agreement with experimental measurements of

top production [30] and bounds imposed by stop searches at the Tevatron [31].

4. Production and decay of other SUSY particles

In this section we briefly discuss some aspects of unique signatures associated with the

production and decay of other SUSY particles. The actual signatures depend on the de-

tailed SUSY spectrum. In particular, we digress on features associated with other NLSP

candidates, including sbottoms, gluinos, gauginos and sleptons. We also comment on the

fate of the “other” mostly right-handed sneutrinos, which are expected to be, as far as

collider experiments are concerned, also stable.

4.1 sbottom

If the b̃R is the NLSP, its pair-production cross-section is naively similar to the stop NLSP

case discussed in section 3. The decay channel analogous to the one discussed for the stop

NLSP is b̃ → t`ÑR. This decay channel, however, may not be kinematically accessible.

Regardless, the dominant channel for a large chunk of the parameter space is expected to

be be b̃R → bνÑR, resulting in the signature pp(p̄) → bb̄ + E/T . Due to the additional

suppression of the decay rate by Y 2
b , we expect NLSP sbottoms to be more long-lived than

the stop NLSP by a factor of Y 2
t /Y 2

b . Here, we expect that it will be harder (compared to

the t̃R NLSP case) to identify efficiently a potentially displaced vertex, due to the absence

of charged leptons in the final state. One may be able to achieve this by asking whether the

§The t̃ → b`ν̃L mode at the Tevatron has been studied in the j`+`−E/
T

channel in [29] with qualitatively

similar results to ours.
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reconstructed 3-momenta of the opposite side b-quarks point back to the primary vertex.

One source of background is QCD bb̄ production – huge – but demanding substantial E/T

should help extract the signal. We expect that substantial E/T will also be crucial for

triggering on the event.

The decay mode b̃R → c`Ñ∗
R is suppressed by |Vcb|2 compared to the mode discussed

above, and should have a branching ratio around 10−3. This mode leads to the signature

pp(p̄) → cc̄`+`− + E/T . The additional pair of leptons will help in discriminating these

events from background but, given the small branching ratio, we expect this decay mode

to be out of the reach of the Tevatron (but not the LHC). As with stop NLSPs, given that

the decay is proportional to the YN ’s, we generically expect different rates for different

charged lepton final states as a characteristic of this scenario.

4.2 Gluino

If the gluino is the NLSP, it decays primarily to a four-body final state g̃ → qq̄′`+ÑR,

via off-shell q̃′ and χ̃+. This leads to the signature pp(p̄) → 4j + 2`± + E/T . A related

mode is to a neutrino in the final state, i.e., g̃ → qq̄ν̄ÑR via off-shell q̃ and χ̃0, leading to

the signature pp(p̄) → 4j + E/T . Unlike the previous mode, in this mode the leptons are

unobservable.

Owing to the four-body final state and the YN suppression, the gluino is expected to

be quite long lived. The decay rate is

Γg̃ ∼ g2
sg

2Y 2
N

M7
g̃

M2
χM4

q̃

[
4π

(16π2)3
f̂4PS

]
, (4.1)

where f̂4PS is a dimensionless four-body phase-space function. Compared to the t̃R NLSP

decay width (eq. 2.2),

cτg̃ = cτt̃R
104

(
Mt̃R

Mq̃

MH̃Mg̃

)4
(

f̂3PS

f̂4PS

)
. (4.2)

We naively estimate τg̃ & 104τt̃R
, so that, for all practical collider purposes, the gluino

is stable (cτ & 100 m). Such a long lived gluino forms an R-hadron and some of its

experimental signatures have been discussed in [19].

As an aside, we comment that if the mass spectrum is such that the gluino is no longer

so long lived, the fact that the gluino is a Majorana particle can be used in order to identify

gluino production and decay. Such processes can result in decays into a pair of same-sign

leptons, and, if kinematically accessible, the case of decays into same-sign tops can be easily

distinguished from background [17].

4.3 Gaugino

Charginos can be pair-produced via off-shell γ and Z-boson exchange, and the NLSP

chargino decays into the LSP via χ̃+ → `+ÑR. This leads to the signature pp(p̄) →
`+`− + E/T . The production cross-section is suppressed relative to that of strongly in-

teracting SUSY particle pair production by (g/gs)
4 ∼ 10−2, and therefore probably too

small to be probed at the Tevatron. The LHC, on the other hand, will have the ability
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to produce weakly interacting states in significant numbers. The chargino lifetime can be

easily estimated as

ΓH̃ ∼ Y 2
NMH̃

[
4π

16π2
f̂2PS

]
, (4.3)

where f̂2PS is a dimensionless two-body phase-space function. Comparing this with the

stop NLSP decay width (eq. 2.2), we obtain

cτH̃ = cτt̃R

(
Mt̃R

MH̃

)5
(

1

16π2

f̂3PS

f̂2PS

)
. (4.4)

For MH̃ = 1.1Mt̃R
, f̂2PS ∼ O(1), and our numerical estimate f̂3PS ≈ 0.05, we get cτH̃ ∼

cτt̃R
×10−4. Chargino decay is, as far as hadron collider experiments are concerned, prompt.

The main background is expected to be W -boson pair production.

Neutralinos can be pair-produced via an off-shell squark, and an NLSP neutralino

decays, most of the time, invisibly: χ̃0 → νÑR. A gluon jet or photon can be radiated

from the initial state leading to the signature pp(p̄) → jE/T or γE/T . Due to the electroweak

production cross-section, it is unlikely that such processes are accessible at the Tevatron.

At the LHC, on the other hand, one may run into a large number of these events. Whether

or not these can be extracted from the various backgrounds requires a dedicated study,

beyond the ambitions of this brief section.

4.4 Slepton

Sleptons are pair produced by the exchange of virtual γ and Z-boson exchange, followed

by the decay ˜̀ → `νÑR. This leads to the signature pp(p̄) → `+`− + E/T . Since this

is a three-body decay, like in the case of the stop NLSP, we expect displaced vertices or

very long-lived sleptons. The only observable decay product of the NLSP slepton is the

charged lepton, so the displaced vertex is characterized by a lepton track that does not

point back to the primary vertex. The dominant background for this channel is W -boson

pair production. Note that this case is similar to some manifestations of gauge-mediated

SUSY breaking with the gravitino as the LSP and the slepton (usually the scalar tau), as

the NLSP [12].

4.5 Co-LSP right-handed sneutrino

Given that there are at least two generations of right-handed sneutrinos (Ñ
(i)
R ), we explore

the possibility of observable consequences of these “co-LSP’s.” Such a possibility was

already raised during studies of the lightest left-handed sneutrino as the LSP [32]. It is

possible, in all the decays considered so far, that a heavier co-LSP, say Ñ
(2)
R , is produced.

This state later decays to the “real” LSP, say Ñ
(1)
R . The relevant (observable) decay

channels are Ñ
(2)
R → Ñ

(1)
R `+`− and the one-loop decay Ñ

(2)
R → Ñ

(1)
R γ. An estimate of these

decay widths is

Γ
Ñ

(2)
R

∼ Y 4
N

M3

Ñ
(2)
R

M2
χ̃

[
4π

(16π2)2
f̂3PS

]
= 10−26

(
M

Ñ
(2)
R

100 GeV

)(
M

Ñ
(2)
R

Mχ̃

)2

f̂3PS GeV , (4.5)
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where f̂3PS is a dimensionless phase space factor. Note that this decay width is proportional

to YN – tiny! – to the fourth power. This leads to a lifetime well above 1 s, so that Ñ
(2)
R

is long-lived enough to exit the detector unseen.

A concern for such long lived particles is whether they disrupt the successful predictions

of big-bang nucleosynthesis. Note that, if the mass difference between the co-LSP states is

relatively small (as one would naively expect), f̂3PS ¿ 1, and the lifetime may be orders of

magnitude longer than the naive estimate above. A more more detailed study, beyond the

ambitions of this section, is required in order to determine the impact of these decaying

co-LSPs in the early universe.

5. Conclusions

Right-handed sneutrinos (ÑR) are present in a supersymmetric theory that includes right-

handed neutrinos. If the right-handed neutrino Majorana mass and the SUSY breaking

scale are identified with the electroweak scale, our understanding of light neutrino masses

requires the neutrino Yukawa coupling to be YN ≈ 10−6. Depending on the details of the

SUSY breaking mechanism, it is possible that a predominantly right-handed sneutrino is

the LSP. We detailed such a theory in [7], and explored the cosmological implications of

a right-handed sneutrino LSP. In this paper we study some hadron collider (Tevatron and

LHC) signatures of such a ÑR LSP.

We show that if such a ÑR is the lightest supersymmetric particle (LSP), the collider

signatures are very interesting, owing to the fact that the ÑR interacts only through the

tiny YN . If R-parity is conserved, all heavier SUSY particles eventually have to cascade

decay to the ÑR through the interaction parameterized by YN . Among other potentially

observable effects (leptons, missing energy), we find that the next-to lightest supersymmet-

ric particle (NLSP) is potentially (very) long-lived. If a mostly right-handed sneutrino is

the LSP, one generically expects displaced vertices due to the relatively long NLSP lifetime,

or heavy, collider-stable hadronic or weak states. Since the NLSP decay to the sneutrino

LSP proceeds through a Yukawa coupling, we expect non-universal rates in the e, µ and

τ lepton channels. Even if the right-handed sneutrinos constituted all of the dark-matter

observed, given its tiny interaction cross-section, the event rate in direct-detection exper-

iments will be well below the sensitivity of planned experiments. These aspects help in

distinguishing this scenario from other SUSY models in interpreting any deviations from

SM predictions. Of course, in order to decide whether the scenario discussed here is real-

ized in nature, it would be imperative to establish that low-energy SUSY is indeed realized

in nature. In order to achieve this, it is important to observe a handful of superpartners,

and establish that their spins and interactions agree with the predictions of a supersym-

metric version of the standard model. A detailed discussion of this is beyond the ambitions

of this paper, but we refer readers to [33] for a list of very recent discussions of this is-

sue.

In order to illustrate these aspects, we consider, in section 2, the scalar top 3-body

decay t̃R → b`+ÑR via an off-shell H̃. We calculate the decay matrix element showing

explicitly the dependence on θb`, the angle between the 3-momenta of the final-state b-
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quark and charged lepton. We show that for YN ∼ 10−6, cτ for the scalar top varies from

millimeters to meters.

We performed a simulation of stop pair production and decay at the Tevatron and the

LHC, using the Monte Carlo program Pythia. Pythia by default treats the 3-body final

state according only to phase-space, so we modified the program to correctly incorporate

the decay matrix element. The signature of this signal is pp(p̄) → t̃Rt̃∗R → b`+b̄`− + E/T .

The dominant physics background is top quark pair production pp(p̄) → tt̄ → bW+b̄W− →
b`+b̄`− + E/T , where the missing energy is due to final state neutrinos.

The transverse displaced vertex after folding in the boost of the stop is shown in

figure 4, and is easily discernible at the Tevatron and the LHC. This can be used to very

effectively suppress the background. If the parameters are such that a displaced vertex

cannot be resolved, we will have to rely on the distributions and event rates in order to

show an excess above background. We see that the pT distributions of the b-quark and

the charged lepton from a 225 GeV stop and the top background are quite similar, and no

clear set of pT cuts can be applied to separate them. The cos θb` distribution is, however,

sufficiently different for signal and background, as can be seen in figure 7.

We summarize the Tevatron and LHC reach in tables 2 and 3. From this physics

level study, we estimate that the Tevatron can probe stop masses up to about 300 GeV

with 10 fb−1, while the LHC is sensitive to about 650 GeV with 500 fb−1 of integrated

luminosity. This reach was obtained after applying only the level 1 cuts shown in ta-

ble 1. A more sophisticated analysis is expected to extend the estimates obtained here.

Needless to say, a full detector-level simulation is necessary in order to realistically as-

sess the capabilities of the Tevatron and the LHC. We would like to point out that the

results presented in tables 2 and 3 should also apply to other SUSY scenarios in which

the scalar top decays predominantly to a b-jet, a charged lepton, and missing transverse

energy, regardless of whether the stop decay occurs promptly or leaves behind a displaced

vertex.

Of course, the nature of the NLSP depends on the details of supersymmetry breaking.

We offered some remarks in section 4 on what channels are promising for several potential

NLSP candidates. We leave a comprehensive analysis of many possible cascade decay

chains for future work.
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A. The Model

To the field content of the MSSM, we add (for each generation) a right-handed neutrino

superfield N̂ = (ÑR, N, FN ). Written as left-chiral fields, the superfields are: Q̂, Û c, D̂c,

L̂, Êc, N̂ c. As usual, the MSSM Higgs doublet superfields are Ĥu and Ĥd. Here we repeat

the main aspects of the model, details of which can be found in [7].

The superpotential is

W = Û cYU Q̂ ·Ĥu−D̂cYDQ̂ ·Ĥd+N̂ cYN L̂ ·Ĥu−ÊcYEL̂ ·Ĥd+N̂ c MN

2
N̂ c+µĤu ·Ĥd , (A.1)

where A · B denotes the antisymmetric product of the fields A and B, Y are the Yukawa

couplings that are 3 × 3 matrices in generation space, and, MN breaks lepton number.

After electroweak symmetry breaking (when the Higgs scalars get vacuum expectation

values vu and vd), the lowest neutrino mass eigenvalue is given by the standard seesaw

relation

mν =
v2
uY 2

N

MN

, (A.2)

where we assume vuYN ¿ MN . Neutrino oscillation experiments indicate that mν ∼
0.1 eV, and if MN ∼ v, eq. (A.2) implies that YN ∼ 10−6.

The soft SUSY breaking Lagrangian is given by

LSUSY Br = − q̃†Lm2
q q̃L − ũ†

Rm2
uũR − d̃†Rm2

dd̃R + (−ũ†
RAuq̃L · hu + d̃†RAdq̃L · hd + h.c.)

− ˜̀†
Lm2

`
˜̀
L − Ñ †

Rm2
N ÑR − ẽ†Rm2

e ẽR + (−Ñ †
RAN

˜̀
L · hu + ẽ†RAe

˜̀
L · hd + h.c.)

+

[
(˜̀· hu)T

c`

2
(˜̀· hu) + ÑT

R

bNMN

2
ÑR + h.c.

]

+ (bµhu · hd + h.c.) , (A.3)

where c` and bNMN are SUSY-breaking, lepton-number breaking parameters. As usual,

m2 are SUSY breaking scalar masses-squared, A are SUSY breaking A-terms, and b is the

SUSY breaking Higgs boson B-term.

After electroweak symmetry breaking, the sneutrino mass matrix (generation structure

suppressed) is given by

Mν̃ =
1

2





m2
LL m2 †

RL −v2
uc†` vuY †

NMN

m2
RL m2

RR vuMT
NY ∗

N −(bNMN )†

−v2
uc` vuY T

N M∗
N m2 ∗

LL m2 T
RL

vuM †
NYN −bNMN m2 ∗

RL m2 ∗
RR



 , (A.4)

where m2
LL = (m2

` +v2
uY †

NYN +∆2
ν), m2

RR = (MNM∗
N +m2

N +v2
uYNY †

N ), m2
RL = (−µ∗vdYN +

vuAN ), and ∆2
ν = (m2

Z/2) cos 2β is the D-term contribution.

The ν̃L-ÑR mixing angle is given by (see [7] for details¶)

tan 2θν̃ =
2
(
m2

RL ± vuM †
NYN

)

(m2
LL ∓ v2

uc`) − (m2
RR ∓ bNMN )

. (A.5)

¶In eqs. (2.5) and (2.7) of [7], the term c` should correctly read v2
uc`, as shown in eq. (A.5) here.
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If AN ∝ YN , as is the case in several popular SUSY breaking scenarios, it is easy to see

that sin θν̃ ∼ YN . For YN ∼ 10−6 – the case of interest here – the mixing angle is tiny, and,

as long as m2
RR < m2

LL, the LSP is an almost pure ÑR.

B. The decay t̃1 → bl
+
ν̃1

Here, we present formulas for the decay width of the 3-body decay of the stop, t̃1 → bl+ν̃1.

Although in the main body of the paper we consider the case when θν̃ ¿ 1 with ν̃1 ≈ ÑR

as the LSP, the formulas in this section are valid in general.

The matrix element is given by

Tfi =
∑

i=1,2

ūb(pb)
(
kt

i1PL + lti1PR

) 1

p/
χ̃+

i

− m
χ̃+

i

(kν∗
i1 PR + lν∗i1 PL) vτ (pτ ) , (B.1)

where

lti1 = −g cos θt̃Vi1 − Yt sin θt̃Vi2 , kt
i1 = Yb cos θt̃Ui2 ,

lνi1 = −g cos θν̃Vi1 − Yν sin θν̃Vi2 , kν
i1 = Yτ cos θν̃Ui2 ,

(B.2)

in the case of Dirac neutrinos. In the case of Majorana neutrinos, lνi1 and kν
i1 have to be

multiplied by 1/
√

2 or i/
√

2 for the cases that ν̃1 is either the scalar state or the pseudo-

scalar state, respectively. The total width is given by

Γ(t̃1 → bτ+ν̃1) =
1

16mt̃1
(2π)5

∫
d3 pb

Eb

d3 pτ

Eτ

δ(Et̃1
− Eb − Eτ − Eν̃1)

Eν̃1

|Tfi|2 , (B.3)

with

Eν̃1 =
√

m2
ν̃1

+ (~pt̃1
− ~pb − ~pτ )2 , (B.4)

|Tfi|2 =
∑

i=1,2

Trii(
(pt̃1

− pb)2 − m2
χ̃+

i

)2

+2Re




Tr12(

(pt̃1
− pb)2 − m2

χ̃+
1

) (
(pt̃1

− pb)2 − m2
χ̃+

2

)



 ,

(B.5)

Trii = 2
(
|kt

i1|2|kν
i1|2 + |lti1|2|lνi1|2

) (
2(pt̃1

− pb) · pτ (pt̃1
− pb) · pb − (pt̃1

− pb)
2 pb · pτ

)

+ 2m2
χ̃+

i

(
|kt

i1|2|lνi1|2 + |lti1|2|kν
i1|2

)
pτ · pb

+ 4mbmχ̃+
i

Re(kt
i1l

t∗
i1)

(
|lνi1|2 + |kν

i1|2
)
(pt̃1

− pb) · pτ

− 4mτmχ̃+
i

Re(kν
i1l

ν∗
i1 )

(
|lti1|2 + |kt

i1|2
)
(pt̃1

− pb) · pb

− 4mτmbRe
(
kt

i1k
ν∗
i1 lνi1l

t∗
i1

) (
(pt̃1

− pb) · (pt̃1
− pb) + m2

χ̃+
i

)
, (B.6)

Tr12 = 2
(
kt
11k

ν∗
11kν

21k
t∗
21 + lt11l

ν∗
11 lν21l

t∗
21

)
×

(
2(pt̃1

− pb) · pτ (pt̃1
− pb) · pb − (pt̃1

− pb)
2 pb · pτ

)
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+ 2mχ̃+
1
mχ̃+

2

(
kt
11l

ν∗
11 lν21k

t∗
21 + lt11k

ν∗
11 lt∗21k

ν
21

)
pτ · pb

+ 2mbmχ̃+
1

(
kt
11l

ν∗
11 lν21l

t∗
21 + lt11k

ν∗
11kν

21k
t∗
21

)
(pt̃1

− pb) · pτ
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